
Week 5 - Wednesday



 What did we talk about last time?
 Arrays







Computer science education cannot make anybody an 
expert programmer any more than studying brushes and 
pigment can make somebody an expert painter.

Eric S. Raymond



 Write a program that reads an integer from the user saying how many 
values will be in a list
 Assume no more than 100
 If the user enters a value larger than 100, tell them to try a smaller value

 Read these values into an array
 Find
 Maximum
 Minimum
 Mean
 Variance
 Median
 Mode





 C files
 All the sources files that contain executable code
 Should end with .c

 Header files
 Files containing extern declarations and function prototypes
 Should end with .h

 Makefile
 File used by Unix make utility
 Should be named either makefile or Makefile



 You can have any number of .c files forming a program
 Only one of them should have a main() function
 For all the functions in a .c file that will be used in other files, 

you should have a corresponding .h file with the prototypes 
for those functions
 whatever.c should have a matching whatever.h

 Both the .c file that defines the functions and any that use 
them should include the header



 Sometimes header files include other header files
 For this reason, it's wise to use conditional compilation directives 

to avoid multiple inclusion of the contents of a header file
 For a header file called wombat.h, one convention is the 

following:
#ifndef WOMBAT_H
#define WOMBAT_H

// Maybe some #includes of other headers
// Lots of function prototypes
// Maybe struct and enum definitions

#endif



 When compiling multiple files, you can do it all on one line:

 Alternatively, you can compile files individually and then link them 
together at the end
 The -c option does partial compilation to a .o file but doesn't link into an 

executable

gcc main.c utility.c wombat.c –o program

gcc –c main.c
gcc –c utility.c
gcc –c wombat.c
gcc main.o utility.o wombat.o –o program



 Compiling files separately is more efficient if you're only changing one or two of 
them

 But it's a pain to type the commands that recompile only the updated files 
 That's why makefiles were invented!
program: main.o utility.o wombat.o

gcc main.o utility.o wombat.o –o program

main.o: main.c utility.h wombat.h
gcc –c main.c

utility.o: utility.c utility.h
gcc –c utility.c

wombat.o: wombat.c wombat.h
gcc –c wombat.c

clean:
rm –f *.o program





 Unfortunately, C does not recognize strings as a type
 A string in C an array of char values, ending with the null 

character
 Both parts are important
 It's an array of char values which can be accessed like anything else 

in an array
 Because we don't know how long a string is, we mark the end with 

the null character



 What is the null character?
 It's the very first char in the ASCII table and has value 0 (zero)
 It is unprintable
 You can write it as
 A char: '\0'
 An int: 0
 A constant: NULL

 It is not the same as EOF (which is -1 as an int value)
 If you allocate memory for a string, you need enough for the 

length plus one extra for the null



 A string literal ("yo, yo, yo!") in C is a char array 
somewhere in memory

 It is read-only memory with global scope
 Maybe it's in the Global or BSS segment (or even some even more 

obscure segment)
 You can throw a string literal into an array:

 Doing so is exactly like doing the following:

char word[] = "wombat";

char word[] = {'w','o','m','b','a','t','\0'};



 You can print out another string using printf()

 Even printf() is only looking until it hits a null character
 What would happen in the following scenario?

printf("The word of the week is: \"%s.\"\n", "exiguous");

char letters[5];
int i = 0;
for(i = 0; i < 5; i++ )

letters[i] = 'A';
printf("The word of the week is: \"%s.\"\n", letters);



 Write a function that finds the length of a string

 Write a function that reverses a string
 First you have to find the null character



Function Use

strcpy(char destination[], char source[]) Copies source into destination

strncpy(char destination[], char 
source[], size_t n)

Copies the first n characters of source into destination

strcat(char destination[], char source[]) Concatenates source onto destination

strncat(char destination[],
char source[], size_t n)

Concatenates the first n characters of source onto 
destination

strcmp(char string1[], char string2[]) Returns negative if string1 comes before string2, positive if 
string1 comes after string2, zero if they are the same

strncmp(char string1[], char string2[], 
size_t n)

Same as strcmp(), but only compares the first n characters

strchr(char string[], char c) Returns pointer to first occurrence of c in string (or NULL)

strstr(char haystack[], char needle[]) Returns pointer to first occurrence of needle in haystack (or 
NULL)

strlen(char string[]) Returns length of string



 To use the C string library
 #include <string.h>

 There are a few more functions tied to memory copying and 
finding the last rather than the first occurrence of something

 There is also a string tokenizer which works something like 
the split() method in Java
 It's much harder to use

 Functions in the string library go until they hit a null character
 They make no guarantees about staying within memory bounds



 They're all done with the string library!
 Remember that strings are arrays
 There is no concatenation with +
 There is no equality with ==
 You can compare using ==without getting a warning, but it's 

meaningless to do so
 You cannot assign one string to another with = because they 

are arrays
 You will eventually be able to do something similar with pointers







 Review



 3 – 4 p.m. office hours canceled today
 Keep reading K&R chapter 5
 Keep working on Project 3
 Exam 1 next Monday!


	COMP 2400
	Last time
	Questions?
	Project 3 
	Quotes
	Array example
	Compiling Multiple Files
	Components
	C files
	Header files
	Compiling
	Makefile
	Strings
	There are no strings in C
	Null character
	String literals
	Using printf()
	Practice
	String functions
	String library
	String operations
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

