
Week 5 - Wednesday



 What did we talk about last time?
 Arrays







Computer science education cannot make anybody an 
expert programmer any more than studying brushes and 
pigment can make somebody an expert painter.

Eric S. Raymond



 Write a program that reads an integer from the user saying how many 
values will be in a list
 Assume no more than 100
 If the user enters a value larger than 100, tell them to try a smaller value

 Read these values into an array
 Find
 Maximum
 Minimum
 Mean
 Variance
 Median
 Mode





 C files
 All the sources files that contain executable code
 Should end with .c

 Header files
 Files containing extern declarations and function prototypes
 Should end with .h

 Makefile
 File used by Unix make utility
 Should be named either makefile or Makefile



 You can have any number of .c files forming a program
 Only one of them should have a main() function
 For all the functions in a .c file that will be used in other files, 

you should have a corresponding .h file with the prototypes 
for those functions
 whatever.c should have a matching whatever.h

 Both the .c file that defines the functions and any that use 
them should include the header



 Sometimes header files include other header files
 For this reason, it's wise to use conditional compilation directives 

to avoid multiple inclusion of the contents of a header file
 For a header file called wombat.h, one convention is the 

following:
#ifndef WOMBAT_H
#define WOMBAT_H

// Maybe some #includes of other headers
// Lots of function prototypes
// Maybe struct and enum definitions

#endif



 When compiling multiple files, you can do it all on one line:

 Alternatively, you can compile files individually and then link them 
together at the end
 The -c option does partial compilation to a .o file but doesn't link into an 

executable

gcc main.c utility.c wombat.c –o program

gcc –c main.c
gcc –c utility.c
gcc –c wombat.c
gcc main.o utility.o wombat.o –o program



 Compiling files separately is more efficient if you're only changing one or two of 
them

 But it's a pain to type the commands that recompile only the updated files 
 That's why makefiles were invented!
program: main.o utility.o wombat.o

gcc main.o utility.o wombat.o –o program

main.o: main.c utility.h wombat.h
gcc –c main.c

utility.o: utility.c utility.h
gcc –c utility.c

wombat.o: wombat.c wombat.h
gcc –c wombat.c

clean:
rm –f *.o program





 Unfortunately, C does not recognize strings as a type
 A string in C an array of char values, ending with the null 

character
 Both parts are important
 It's an array of char values which can be accessed like anything else 

in an array
 Because we don't know how long a string is, we mark the end with 

the null character



 What is the null character?
 It's the very first char in the ASCII table and has value 0 (zero)
 It is unprintable
 You can write it as
 A char: '\0'
 An int: 0
 A constant: NULL

 It is not the same as EOF (which is -1 as an int value)
 If you allocate memory for a string, you need enough for the 

length plus one extra for the null



 A string literal ("yo, yo, yo!") in C is a char array 
somewhere in memory

 It is read-only memory with global scope
 Maybe it's in the Global or BSS segment (or even some even more 

obscure segment)
 You can throw a string literal into an array:

 Doing so is exactly like doing the following:

char word[] = "wombat";

char word[] = {'w','o','m','b','a','t','\0'};



 You can print out another string using printf()

 Even printf() is only looking until it hits a null character
 What would happen in the following scenario?

printf("The word of the week is: \"%s.\"\n", "exiguous");

char letters[5];
int i = 0;
for(i = 0; i < 5; i++ )

letters[i] = 'A';
printf("The word of the week is: \"%s.\"\n", letters);



 Write a function that finds the length of a string

 Write a function that reverses a string
 First you have to find the null character



Function Use

strcpy(char destination[], char source[]) Copies source into destination

strncpy(char destination[], char 
source[], size_t n)

Copies the first n characters of source into destination

strcat(char destination[], char source[]) Concatenates source onto destination

strncat(char destination[],
char source[], size_t n)

Concatenates the first n characters of source onto 
destination

strcmp(char string1[], char string2[]) Returns negative if string1 comes before string2, positive if 
string1 comes after string2, zero if they are the same

strncmp(char string1[], char string2[], 
size_t n)

Same as strcmp(), but only compares the first n characters

strchr(char string[], char c) Returns pointer to first occurrence of c in string (or NULL)

strstr(char haystack[], char needle[]) Returns pointer to first occurrence of needle in haystack (or 
NULL)

strlen(char string[]) Returns length of string



 To use the C string library
 #include <string.h>

 There are a few more functions tied to memory copying and 
finding the last rather than the first occurrence of something

 There is also a string tokenizer which works something like 
the split() method in Java
 It's much harder to use

 Functions in the string library go until they hit a null character
 They make no guarantees about staying within memory bounds



 They're all done with the string library!
 Remember that strings are arrays
 There is no concatenation with +
 There is no equality with ==
 You can compare using ==without getting a warning, but it's 

meaningless to do so
 You cannot assign one string to another with = because they 

are arrays
 You will eventually be able to do something similar with pointers







 Review



 3 – 4 p.m. office hours canceled today
 Keep reading K&R chapter 5
 Keep working on Project 3
 Exam 1 next Monday!


	COMP 2400
	Last time
	Questions?
	Project 3 
	Quotes
	Array example
	Compiling Multiple Files
	Components
	C files
	Header files
	Compiling
	Makefile
	Strings
	There are no strings in C
	Null character
	String literals
	Using printf()
	Practice
	String functions
	String library
	String operations
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

